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Abstract—The proliferation of smartphones has enabled a
novel paradigm, participatory sensing, which leverages the s-
martphones to collect and share data about their surrounding
environment. Since the sensing tasks are location-dependent and
have time features, it is crucial and challenging to find a proper
allocation of sensing tasks to ensure the timeliness of tasks
and the quality of sensing data. In this paper, we investigate
the heterogeneous sensing task allocation problem aiming at
minimizing the total penalty caused by the tardiness of tasks.
We prove this problem is NP-hard and propose two hybrid
algorithms which combine a heuristic algorithm and two meta-
heuristic algorithms respectively. The extensive simulation results
show that the proposed hybrid algorithms outperform the meta-
heuristic algorithms.

I. INTRODUCTION

With recent advances in wireless communication and Micro
Electro Mechanical Systems (MEMS), smartphones have be-
come more and more pervasive. Integrated with a variety of
sensors (e.g. accelerometer, gyroscope, microphone, camera),
smartphones are able to sense the surrounding environment.
Being with a mobile user almost round-the-clock, a smart-
phone becomes an important bridge connecting the physical
world to the cyber world. These advances have enabled a new
promising paradigm, participatory sensing or crowdsensing,
which harnesses the smartphones to collect and share data
[1][2].

Compared with traditional sensing systems such as wireless
sensor networks (WSNs), a participatory sensing system has
many advantages. It is easier for participatory sensing to
enable various applications (social networks [3][4], indoor
localization [5][6], environmental monitoring [7][8] and traffic
monitoring [9][10]) at a community scale with higher cover-
age/scalability and lower installation/maintenance cost [1][11].
Hence the research of this area is of importance.

Currently, various participatory sensing systems have been
proposed for specific sensing applications. It is very interesting
and helpful to build a unified architecture to support multiple
applications, since most of them share common data require-
ments and similar functionalities [2]. One key challenge is the
allocation of sensing tasks among smartphones. As illustrated
in Fig.1, a typical participatory sensing system supporting
various applications is composed of a central cloud platform, a
collection of service requesters and a pool of smartphones. The
cloud platform accepts sensing tasks from service requesters,
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Fig. 1. The architecture of a unified participatory sensing system

then allocates those tasks to the smartphones. After performing
the assigned tasks, the smartphone submits the sensing data to
the cloud platform which runs aggregate analysis and forwards
the result to the corresponding service requester.

Due to the unique characteristics of tasks and mobile users,
it is crucial and challenging to assign tasks among mobile users
to ensure the timeliness of tasks and the quality of sensing data.
First, each task is location-dependent, which means it needs
to be performed at a certain location, e.g. monitoring noise
level at a specific location. Second, sensing tasks can have
different task release times, deadlines and processing times.
For example, in a traffic monitoring application, a task must
be performed between 8 a.m and 9 a.m, and kept monitoring
for 30 minutes to evaluate traffic congestion in a morning
rush hour. Third, the mobile users also have different initial
locations. Therefore, it will take some time for the mobile user
to travel different places to finish tasks. Fourth, tasks should
be processed within the given release times and deadlines. The
deadlines are soft deadlines. If a task is finished later than its
deadline, the quality of sensing data degrades accordingly.

Some researchers have studied the task allocation problem
in participatory sensing. However, they both have some con-
straints. Zhao et al. [12] investigate the homogeneous sensing
task allocation problem which neglects that tasks are location-
dependent. He et al. [13] study the location-dependent sensing
task allocation problem. However, they do not consider the
time features of tasks.

In this paper, we study the heterogeneous sensing task
allocation problem. Some challenges need to be solved. First,
the completion time of each task depends on the task release
time, processing time and the travelling time needed by a
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mobile user. A small change in the task allocation can result in
finishing tasks with long tardiness. Thus, it is difficult to assign
tasks to smartphones to complete them as early as possible,
while ensuring the quality of contributed data. Second, there
can be a large number of tasks and users. The complexity of
an exhaustive search is high, and we prove this problem is
NP-hard. Our main contributions are summarized as follows:

• It is the first work that investigates the heterogeneous
sensing task allocation problem in participatory sensing
systems, considering the spatial and temporal constraints
in both tasks and mobile users. The objective is minimiz-
ing the total penalty caused by tardiness of sensing tasks
to ensure the quality of data;

• We formally formulate this problem and rigorously prove
it is NP-hard. We propose two hybrid algorithms to
solve this problem and compare their performance. The
hybrid algorithms combine a heuristic algorithm with two
meta-heuristics respectively. We have conducted extensive
simulations to evaluate their performance. The result
shows that the proposed hybrid algorithms outperform the
meta-heuristics.

The rest of this paper is organized as follows. Section
II reviews some related work. In Section III, we introduce
the system model and formulate the problem. Section IV
describes the design of the proposed hybrid algorithms. Section
V presents and discusses evaluation results. In Section VI, we
conclude the paper and present the future work directions.

II. RELATED WORK

Recently, participatory sensing has received great attention
due to the proliferation of smartphones and its various appli-
cations [3–10]. Some existing work has studied issues such as
participation incentive [14], privacy and security of users [15].
This work focus on the task allocation problem.

Some researchers have studied the task allocation problem in
participatory sensing. In [12], Zhao et al. study the allocation
of the homogeneous sensing tasks for optimizing the energy
efficiency of member smartphones, where tasks are identical
and can be assigned to arbitrary smartphones. They ignore
the important features (e.g. location) of tasks and users. He et
al. [13] take into account the location-dependent tasks and
user’s time budget. However, they neglect that tasks have
time features, especially the task processing time. In [16],
Wang et al. study the sensing task allocation problem from
the perspective of spatiotemporal coverage ratio. They only
consider regular participants (e.g. city buses, school buses)
with a regular spatiotemporal moving pattern.

Some research work has studied the task allocation problem
in crowdsourcing markets. In [17], Ho et al. propose a two-
phase exploration-exploitation assignment algorithm to assign
heterogeneous tasks to workers with unknown skill sets. The
workers can arrival on-line. The goal is to maximize the profit
of the service requesters. In [18], the authors investigate the
problem of determining a group of workers for each incoming

task. They assume the task is with a list of possible answers,
which is different from the task model in participatory sensing.

Unlike previous work, we investigate the heterogeneous task
allocation problem in participatory sensing with the goal of
minimizing the total penalty caused by tardiness of tasks.

III. PROBLEM FORMULATION

In this section, we first present the system model, and then
formally define the problem. At last, we prove the NP-hardness
of this problem.

A. System Model

As shown in Fig.1, a participatory system consists of a
cloud platform, a set of service requesters and a pool of
mobile users (i.e. smartphone users). The service requesters
can publish different sensing tasks in the cloud platform, which
then allocates tasks to the mobile users. After finishing the
assigned tasks, the mobile user uploads the sensing data to
the platform which forwards the result to the corresponding
service requester. We denote the set of registered mobile users
by U = {u1, u2, ..., um}, and the collection of sensing tasks by
T = {t1, t2, ..., tn}. The mobile users are identical except for
different initial locations. They have the same moving speed.
The initial position of user ul is defined as Pul

.
The sensing tasks are location-dependent and have different

time features. The task tj is present as tj =< Ptj
, rj , dj , pj >,

where Ptj
is the location of tj , rj is the release time of

tj , dj denotes the deadline and pj denotes the processing
time needed to accomplish tj . A mobile user has to travel to
different locations associated with tasks. We define Timelj as
the travelling time from Pul

to Ptj
. Let sij denote the time

needed by a mobile user to travel between task ti and tj and
we assume sij = sji. We define Cj as the completion time
of tj and Tj = max{0, Cj − dj} as the the tardiness of tj . In
this problem, we allow late tasks, i.e. the tardiness Tj can be
larger than zero.

We assume that a task can only be assigned to one mobile
user and is indivisible. This can be achieved in the cloud
platform by dividing a sensing task into a large number
of indivisible tasks which can be performed on a single
smartphone. The mobile users are volunteers or member users
of the system, and they are always available. Such assumptions
are practical in enterprise or agreement-based cooperation
scenarios [12]. The time is considered as discrete slots of equal
size (1 unit time). Hence, the rj , dj , pj , Timelj and sij are
non-negative integers.

B. Problem formulation

Next, we formally define the heterogeneous sensing task
allocation problem. In order to obtain better sensing data, the
goal is to minimize the total penalty caused by the tardiness.
We define the penalty Costj of task tj as follows:

Costj =

{
C0 + α · (Tj)β , if Tj > 0
0, if Tj = 0

(1)



C0, α and β are the penalty parameters: C0 ≥ 0, α ≥ 1 and
β ≥ 1.

For convenience, we define some decision variables xil,
ti ∈ T , ul ∈ U : xil = 1 if the ti is assigned to ul; xil = 0
otherwise. yij , ti, tj ∈ T : yij = 1 if the ti and tj are assigned
to the same mobile user and ti is scheduled immediately before
tj ; yij = 0 otherwise.

The heterogeneous sensing task allocation problem with the
objective of minimizing the total penalty can be formulated as
follows:

min
n∑

j=1

Costj (2)

s.t.
n∑

i=1

m∑
l=1

xil = n (3)

m∑
l=1

xil = 1, i = 1...n (4)

ri + pi +
n∑

i=1

yij · sij ≤ Cj , j = 1...n (5)

pi +
n∑

i=1

yij · (sij + Ci) ≤ Cj , j = 1...n (6)

xil = {0, 1} (7)

yij = {0, 1} (8)

Ti = max{0, Ci − di} (9)

Equation (3) ensures that all the tasks are scheduled. Con-
straint (4) ensures that each task is scheduled only on one
mobile user. Constraint (5) and (6) ensure that a mobile
user can only start tasks after finishing the previous task and
travelling the required distance between different tasks. Note
that a mobile user cannot start a new task until the new task
is released and he has completed the preceding task.

C. Analysis of the NP-hardness

Theorem 1. The heterogeneous sensing task allocation prob-
lem with the objective of minimizing the total penalty of all
tasks is NP-hard.

Proof: We prove the task allocation problem is NP-hard
by reducing it to one kind of Parallel Machine Scheduling
(PMS) problems [19], i.e. Pm|rj , sij |

∑
T [20], which is

known to be NP-hard. In the Pm|rj , sij |
∑

T problem, Pm
indicates that there are m identical parallel machines. The
jobs have different arrival time ri, processing time, deadline
and a sequence dependent setup time sij of processing job i
immediately after job j. Each job can only be assigned once
to one machine. The optimizing goal is to find the optimal
schedule of the jobs that minimizes

∑
T , the sum of the

tardiness of all the jobs.
Given an instance of Pm|rj , sij |

∑
T , we can construct the

instance of the sensing task allocation problem as follows: each
job with time features is mapped to a task with corresponding
time features, and each machine is mapped to a mobile user. A
sequence dependent setup time sij is mapped to the travelling
time between task ti and tj . We set the penalty parameters as

C0 = 0, α = 1, β = 1. Therefore, the sum of the tardiness of
all the jobs in an optimal scheduling is just the total penalty of
all tasks. For any instance of Pm|rj , sij |

∑
T , a corresponding

instance of the heterogeneous sensing task allocation problem
is reduced to it in polynomial time, which ends the proof.

IV. TASK ALLOCATION ALGORITHMS

In this section, we present two hybrid heuristic algorithms
for the heterogeneous sensing task allocation problem. The
hybrid heuristic algorithms combine the Earliest-Completion-
Time (ECT) heuristic with other meta-heuristic algorithms,
i.e. the genetic algorithm and the iterated greedy algorithm
respectively.

A. Earliest-Completion-Time Heuristic Algorithm

In order to minimize the total penalty of tasks, the ECT
heuristic detailed in Algorithm 1 is proposed. It is meant to
assign tasks to mobile users with earliest completion times.
This heuristic can be integrated with other meta-heuristics for
determining initial solutions.

At the beginning of this algorithm, all the tasks are sorted by
the non-decreasing order of their deadline. So the tasks with
earlier deadline have higher priority to be assigned according
to the EDD (earliest due date first) rule. Initially, none of tasks
is assigned to user ul, so the Tl is empty.

From line 3 to line 16 in Algorithm 1, we assign each task
to a mobile user. We try to find a mobile user ul∗ who can
finish the task ti with the earliest completion time from line
6 to line 14. For an arbitrary mobile user ul, a task ti cannot
start earlier than its release time ri or until ul finishes his
latest task tk. So the expected completion time of task ti is
Ci = max{ri, Ck} + ski + pi. We calculate the Ci for all
l = 1...m, and finally we assign the task ti to ul∗ with the
earliest completion time.

The time complexity of ECT is O(n log n + mn), where n
is the number of tasks and m is the number of mobile users.
Since the time complexity of sorting all tasks is O(n log n)
and the main loop needs the time complexity of O(mn).

B. Hybrid Genetic Algorithm

Genetic algorithm (GA) is one of the well-known stochastic
search algorithms [21], which is based on the principles of the
evolution theory. We design a hybrid genetic algorithm (HGA)
which combines the ECT with the genetic algorithm. The ECT
provides good initial solutions for the genetic algorithm to
reduce the blind search space. Three genetic operators, i.e
crossover, mutation, and selection, are performed to explore
the solution space. The detail of HGA is introduced as follows:

1) Solution coding: The first step in the genetic algorithm
is to determine the representation of solution or chromosome.
As shown in Fig.2, each chromosome consists of (n+m− 1)
genes, i.e n task genes and m − 1 separation genes marked
with ’*’, to divide n genes into m subchromosomes [22][23].
Each subchromosome represents a task allocation of a mobile
user Tl. If there are no task genes between two consecutive
separation genes, the corresponding mobile user of the second



Algorithm 1 The ECT heuristic algorithm
Input:
T = {t1, t2, ..., tn}: the sensing task set;
U = {u1, u2, ..., um}: the mobile user set;

Output:
Tl: tasks assigned to user ul, l = 1...m.

1: Sort all the tasks by non-decreasing order of their deadline
di. We assume that d1 ≤ d2 ≤ ... ≤ dn.

2: Set Tl ← ∅ for l = 1...m
3: for i = 1→ n do � For each task ti in T
4: l∗ = 0 � The most suitable mobile user
5: Cmin = INF
6: for l = 1→ m do
7: if Tl �= ∅ then
8: k = Latest(Tl) � k is the latest task assigned

to ul

9: Ci = max{ri, Ck}+ ski + pi

10: else
11: Ci = ri + Timeli + pi

12: if Cmin ≥ Ci then
13: Cmin = Ci, l∗ = l

14: Ci = Cmin, Ti = max{0, Ci − di},
15: Calculate Costi according to Eq.(1)
16: Tl∗ = Tl∗ ∪ {i} � Assign task ti to the user ul∗

separation gene has no tasks. When there are no tasks genes
after the last separation gene, the rest mobile user is not
assigned tasks.

Fig. 2. The representation of chromosome

2) Initial population generation: The initial population is
generated from two subpopulation with the same number of
chromosomes [23]: one comes from the ECT, and the other is
generated by randomly assigning all tasks to the mobile users.
The size of the population is PopSize.

3) Crossover: According to a crossover probability Pc, all
chromosomes in the parent population are mutually crossed
over to generate the offsprings [21][24]. Fig.3 illustrates an
example of the crossover operation.

• Choose two chromosomes, Parent1 and Parent2, from the
parent population;

• Randomly generate a binary string of n+m−1 elements,
filled with ”1” or ”0”;

• Match the string with Parent1 such that genes correspond-
ing to ”1” are selected to the Part1 with the same positions
in Parent1;

• Cross out the same genes in the Part1 from Parent2, and
copy the left genes to the Part2;

• The offspring is generated by filling out the empty
locations of Part1 with the genes of Part2 preserving the
same gene sequence;

1 2 3 4 1* 5 6 8 2* 10 9 7 

1 0 0 1 1 0 0 1 0 1 0 1 

Parent1 

String 

1 4 1* 8 10 7 Part1 

9 5 1* 10 7 1 3 2* 6 8 4 2 Parent2 

9 5 3 2* 6 2 Part2 

1 9 5 4 1* 3 2* 8 6 10 2 7 Offspring 

Fig. 3. An example of the crossover operation

4) Mutation: The mutation operator can generate new com-
binations of genes, which helps the search to jump out of
a local optimum. We use the swap mutation according to
a given mutation probability Pm as follows [21]: randomly
select two genes from different subchromosomes and swap
their positions. All the offsprings from the mutation are kept
for the new generation.

5) Selection: Selection is an important operator to choose
the proper chromosomes for the next generation. Since each
chromosome represents a solution of task allocation, its fitness
value is defined as objective value, i.e. total penalty, which can
be calculated according to the Algorithm 2.

Algorithm 2 Calculate the total penalty of a solution of task
allocation
Input:
Tl: tasks assigned to user ul, l = 1...m.

Output:

The total cost
n∑

i=1

Costi

1: for l = 1→ m do
2: for take ti from Tl according to its order do
3: if ti does not have a prior task then
4: Ci = ri + Timeli + pi,
5: else
6: tk is the direct prior task of ti
7: Ci = max{ri, Ck}+ ski + pi

8: Ti = max{0, Ci − di}, Calculate Costi according
to Eq.(1)
return The sum of Costi, i = 1...n

Let γg
i denote the selection value of chromosome i in the

generation g. It can be calculated as

γg
i = (F g

max − F g
i )2 (10)

where F g
max is the maximal fitness value of generation g.

It is obvious that the lower the fitness value, the higher its
selection value. Since our optimization goal is to minimize



the total penalty, the chromosomes with lower fitness values
should have more chance to be selected. The most used
selection mechanism is the ”roulette wheel” sampling. The
chance of chromosome being selected for the next generation is
proportional to its selection value. The wheel is spun PopSize
times.

6) Stopping criteria: We use two rules to stop the HGA
[24]: (1) the current generation number g is greater than the
maximum number of generation Gmax, and (2) the standard
deviation of the fitness values of chromosomes in generation
g is less than an arbitrary constant ε , which can be calculated
as:

σg =

[
(

1
PopSize

)
PopSize∑

i=1

(F g
i − F g)

]1/2

(11)

where F g is the average fitness value of chromosomes in
generation g.

C. Hybrid Iterated Greedy Algorithm

The iterated greedy (IG) heuristic is one of the meta-
heuristics which has been applied successfully to a number
of combinatorial optimization problems such as the large set-
covering problem [25] and the parallel machine scheduling
problem [26].

A general IG algorithm consists of 3 main steps: destruc-
tion, construction and acceptance. The hybrid iterated greedy
algorithm (HIG) combines the ECT with the IG heuristic in
order to avoid the blind search of IG at the beginning. The
details of the hybrid algorithm are as follows:

1) Initial Solution Generation: The initial solution ϕ0 is
generated by the ECT algorithm. And we adopt the same
solution representation as the HGA. The penalty of a solution
can be calculated by the Algorithm 2. Set ϕ0 as the current
solution ϕ and the best solution ϕbest.

2) Destruction: Randomly remove η tasks from the ϕ and
save them in ϕp preserving the same order of selecting them.
ϕd is the partial solution after the removal of η tasks.

3) Construction: Reinsert the tasks of ϕp into ϕd until
a new full solution is constructed. The tasks of ϕp can be
inserted into all possible positions in ϕd. The new best solution
ϕnew with minimal cost is recorded during the iterations.

4) Acceptance: We adopt a simulated annealing-like accep-
tance criterion with sinking temperature [26]. T0 is the initial
temperature and Tcurr is the current temperature. When the
algorithm runs a fixed number of iterations Ifixed, Tcurr will
decrease as Tcurr = λTcurr, where 0 < λ < 1.

If ΔCost = Cost(ϕnew)− Cost(ϕbest) is less than 0, we
update the best solution ϕbest = ϕnew and ϕ = ϕnew. To jump
out of a local optimum, we utilize the Boltzmann function
which is used in the simulated annealing algorithms. This
function starts with generating a random number r ∈ [0, 1].
If r < e−ΔCost/T , we replace the ϕ with ϕnew. Therefore,
the penalty of ϕ can be improved iteratively through the
destruction and construction phase.

5) Stopping criteria: The iterations do not stop until any
of the following rules is met [26]: (1) the current temperature
Tcurr is less than a given temperature value Tfinal; (2) the
reductions of temperature exceed a fixed number Nmax.

V. PERFORMANCE EVALUATION

In this section, we implement both the meta-heuristic algo-
rithms and hybrid algorithms, and evaluate their performance
with the total penalty.

A. Simulation Setup

We assume a region of size 3000m×3000m. The sensing
tasks and mobile users are randomly distributed in this region.
The time slot is one minute. The release time rj and the pro-
cessing time pj are randomly generated in [0, 1000] and [1, 30]
respectively. And the deadline is set as dj = rj + pj + Δd,
where Δd is randomly chosen in [0, 15]. We set the moving
speed of user is 4 km/h. Hence the sij and Timelj can be
calculated through dividing the Euclidean distance between
tasks and users by the moving speed. We set the penalty
parameters as C0 = 10, α = 1.25 and β = 2. For each
test case, we generate 20 instances and run 10 times for each
instance. According to preliminary experiments, we determine
the parameters for HGA are as follows: PopSize = 20,
Pc = 0.9 , Pm = 0.1 , Gmax = 300 and ε = 0.0001 . The
parameters for HIG are as follows: η = 4 , T0 = 40, λ = 0.9,
Ifixed = (n + m− 1) ∗ 30, Tfinal = 1 and Nmax = 25.

B. Simulation Results

We evaluate the performance of hybrid algorithms and
meta-heuristics under different experiment settings. We first
investigate the impact of the number of mobile users on
the performance of algorithms. The number of tasks is 80,
120 and 200 with different number of mobile users from
10 to 50. The results are shown in Fig.4, Fig.5 and Fig.6.
We can deduce that the hybrid algorithms outperform the
original meta-heuristic algorithms with lower penalty under
different number of mobile users. This is because the hybrid
algorithms utilize the ECT to generate a good initial solution,
which reduces the blind search and enhances the optimization.
Especially, the HGA has better performance than the HIG. For
all the algorithms, the total penalty decreases as the number
of mobile users increases. This is because the tasks can have
more chance to be assigned to other mobile users with earlier
completion time.

Second, we study the impact of the number of tasks on the
performance of algorithms. We set the number of mobile users
is 30 and vary the number of tasks from 40 to 120. As shown
in Fig.7, the total penalty increases with the number of tasks.
Since there are fixed number of mobile users, a mobile user
will process more tasks on average, which may increase the
completion time and the tardiness of tasks.



Fig. 4. The total penalty vs mobile
users when the task number is 80

Fig. 5. The total penalty vs mobile
users when the task number is 120

Fig. 6. The total penalty vs mobile
users when the task number is 200

Fig. 7. The total penalty vs task
number when the user number is 30

VI. CONCLUSION

In this paper, we have studied the heterogeneous task
allocation problem in participatory sensing systems with the
goal of minimizing the the total penalty caused by the tardiness
of tasks. We formally formulate this problem and rigorously
prove it is NP-hard. To address this problem, we have proposed
two hybrid heuristic algorithms which combine the ECT
heuristic with meta-heuristic algorithms. Extensive simulations
have been performed to evaluate these algorithms. The results
demonstrate that the hybrid algorithms outperform the meta-
heuristic algorithms with lower total penalty. In the future
work, we will investigate the situation where dynamic arrival
and departure of users is allowed and the on-line model of
tasks.
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