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These operations are sequentially scheduled with �xed
interval in order to avoid concurrent access of hard
driver. It also allocates dedicated memory space for the
programs. A good initialization is the key point to a
successful positioning.

2) Sensor data processing: This module processes the
inertial data of on-body sensor nodes and radio-based
distance estimated from environmental assisted sensor
nodes. A step recognition algorithm is �rstly applied to
determinate whether the target has moved. Then either
pure DR or our hybrid algorithm can be applied. In our
hybrid algorithm, after getting the estimated position,
two parameters will be feedbacked to on-body sensor
nodes in order to correct the step length and orientation
of the target.

3) Parameters veri�cation: This module serves as a tool
to visualize the parameters and test them on-the-�y.
Figure 3 gives one snapshot of this module. Through
this interface, one could easily verify the motion data
either in Y-P-R representation or DCM Matrix form.

Fig. 3. Parameter display and veri�cation tool

III. L OCALIZATION ALGORITHM

In this section, we introduce the dead reckoning algorithm
that we used with inertial data generated by on-body nodes.
The experimental results collected on WiBEST of DR al-
gorithm show an unsatis�ed accuracy for positioning over
time. Then we proposed a hybrid algorithm using EKF to
minimize the effect of drift. We consider the environmental
sensor nodes as anchors as well as the previous location of the
target. The EKF fuses the measurements and predicts the state
and covariance of the system. The inertial data packets are
broadcasted with timestamps, which are used to synchronize
the inertial and radio-based parts. Furthermore a step length
adaptation algorithm is used once the position is calculated by
the hybrid algorithm to adjust the step length.

A. Dead Reckoning

There are two key elements in this algorithm: the step
recognition algorithm; and the heading estimation. To this
end, we use two feet-mounted sensor nodes �xed around the

Fig. 4. The foot-mounted sensor nodes are �xed around the ankles

ankles for step recognition as shown in �gure 4, and one chest-
mounted sensor node for heading estimation. To minimize the
error results as the cloth moves over the body, the sensors are
all mounted using Velcro belt worn by the user.

The step recognition is essential in in-door tracking problem
and widely used in Dead Reckoning solutions [7], [12]. In our
realization, the step recognition is based on yaw, pitch androll
and 3-axis acceleration. Firstly, all the raw data go through the
AIO with offset for adjustment. By setting time switch, the unit
is able to synchronize data from different on-body sensors
for processing. Secondly, differential and envelop operation
are performed on the data series to output a continuous and
smooth acceleration variation.

The 3D acceleration is enveloped to get direction and a
series of values. A threshold value should be de�ned to trigger
the step. A number of tests are realized to get this thresholdfor
our test environment. The acceleration magnitude's maximum
value, minimum value and variance are determined for each
step. It is also possible to implement a self-learning algorithm
to get this threshold. In order to eliminate repetitive trigger, a
switch is used with time interval for possible next trigger.

The heading estimation is provided directly by chest-
mounted sensor node. This sensor node broadcast a packet
containing 3 � 3 DCM data. We assume that the target is
always walking forward.

The system described above was tested in an indoor en-
vironment, and the indoor navigation time was intentionally
made long to access the properties of the PDR mechanization.
These tests are not intended to be exhaustive, but do give
useful results which can be taken as typical indicator of
the performance. The main goal of the experiment was to
verify the accuracy of the heading for Pedestrian motion.
No corrections for the step lengths during the DR part were
applied.

Figure 5 shows the trajectory of 18m-track using DR. We
take 30 samples during the track, and we let the target take
a short break on each samples for 1 second and applied a
mean on this samples. The break is not visible on the �gure
5, because the results only show the space deviation of the
trajectory estimated by DR. The dotted line gives the real
trajectory of walking and the solid line is the positioning
by DR. It is easy to identify the deviation of the estimated
trajectory from the real one.
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Fig. 5. The path estimated by dead reckoning for 18 m test track
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Fig. 6. The error histograms for 18 m test track

We compute the error on each sample point and show the
error distribution in figure 6. The maximum error during this
experiment is about 0.5887 meters, and the mean error is about
0.3924 meters. Error between 0.5m and 0.6m accounts for 35%
of the total errors and the majority of them occur at the end
of the path. The results demonstrate that Dead Reckoning can
serve as a reliable positioning method when used for short
time interval. The main error resources come from the body
movements and multiple uncertain readings of step length and
heading. But accumulative effect of drift problem exists in this
kind of method.

B. Hybrid Algorithm

As the Dead Reckoning positioning method cannot deal
with accumulative errors over time, the position errors must
be corrected by other methods. Since wireless on-body nodes
need to communicate to wireless gateway for the localization,
we take advantage of the existing wireless communication to
use a radio-based method to minimize the effect of drift. The
main idea is to use environmental assisted sensor nodes to
capture the radio signals sent by on-body nodes and generate
distance estimations to correct the DR localization.

In many radio-based solutions, a target actively sends re-
quests to anchor nodes and calculates the distances based
on the reply from the anchor nodes. However, this generates
intensive data communication around the target nodes, which
may influence the reliability of RSSI capture. This is because
that the same channel is used for communication and local-

ization. Therefore in our solution, the role of measuring is
shifted from target nodes to anchor nodes, i.e., environmental
assisted nodes measure the RSSI of the packet sent by on-
body sensor nodes and estimate the distance to the target. At
the same time the inertial data is used to generate a vector
from the previous position of the target. A time stamp is
necessary to synchronize the inertial data set and radio-based
distance data set. We select the chest-mounted sensor node
to include this time stamp in its packet. It is broadcasted
rather than unicasted, so that environmental assisted nodes
can also decode the packet and tag the distance with this time
stamp. In the system, the environmental assisted sensors do
not generate any communications overhead; hence the overall
communication cost is low and depending only on on-body
sensors.

All these data will be put into an Extended Kalman Filter
(EKF) that continuously does the estimation. The dynamics of
the pedestrian used in this algorithm can be well-modeled by
the following set of nonlinear equations:

q(k + 1) =





xk +∆Dk cos(θk)
yk +∆Dk sin(θk)

θk +∆θk



+ v(k) = f(qk, k) + v(k)

(1)
with measurements modeled by:

y(k) =





2
√

(xb − xk)2 + (yb − yx)2
2
√

(xk − xk−1)2 + (yk − yk−1)2

θk − θk−1



+ w(k)(2)

=





rk
∆Dk
∆θk



+ w(k) = h(qk, k) + w(k) (3)

where,
• f(qk, k) + v(k) is the dynamic model function at time k
• rk,∆Dk,∆θk are the target’s position and angular direc-

tion at time k
• ∆Dk is the odometric distance traveled, ∆θk is the

change in heading, rk is the range measurement received
at time k

• (xb, yb) is the location of the anchor point from which
the measurement is taken.

To apply the EKF, we linearize these equations on the
current state estimate discrete time system of the form:

q(k + 1) = A(k)q(k) + v(k)y(k) = A(k)q(k) + v(k) (4)

where,

A(k) =

∂f
∂qk

∂qk
|q = q̂ (5)

And

H(k) =
∂h

∂qk
|q = q̂ (6)

The EKF fuses the measurements and predicts the state and
covariance of the system at each timestep. Since the nonlinear
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range measurements which must be linearized are collected,
the �lter will diverge if the initial condition is not relatively
close to true; fortunately, having a fairly good initial estimate
is a reasonable assumption for many real-world applications
and the inertial data will be offset before the use of EKF.

C. Adaptive Step Length Algorithm

The �xed step length used in DR is one of the factors
responsible for uncertain reading on step length. In [13],
the step length is shown to be in�uenced in linear pattern
by walking frequency and a variance of the accelerometer
signals during one step. Here, we use the estimated position
by EKF to feedback the step length. The step length can be
computed using a linear combination of walking frequencyf
and variance of the displacement from the last position� :

SLk = � � f k + � � � k + 
 (7)

where � ,� ,
 are the parameters obtained during a pre-
calibration stage. The walking frequency and the variance of
displacement can be obtained from the following expressions:

f k = 1=(tk � tk � 1) (8)

� i = jy(k) � y(k � 1)j � j
y(k) � y(0)

k
j (9)

where tk denotes detection time of thekth step.y(k) is the
current estimated position. This expression allows adapting
the step length on-the-�y so as to improve the accuracy of
localization. A pre-calibration stage is necessary to set up cor-
rect parameters for a person in an indoor environment. Linear
Regression method is used to obtain values of� ,� ,
 . Linear
regression is an approach to modeling the relationship between
a scalar dependent variable and one or more explanatory
variables. In order to estimate the unknown model parameters,
we need to collect the data set which contains the Actual
Step Length obtained in the �eld experiment, frequency, and
Variance. Parameter� , � , 
 differ from persons, and here
we collect the experiment samples for the same experiment
person. We can get the derivation equation from Equation (7):

Q(�; �; 
 ) = SL � � � f + � � � + 
 2 (10)

Using the data set of (SL,f,� ) to create equation array,
we can further convert the equation array to the following
summary equation by add all the sample equations together:

Q =
kX

i =1

Qi (�; �; 
 ) =
kX

i =1

SL i � � � f i + � � � i + 
 2 (11)

the optimized value of� , � , 
 are obtained through the
following derivative equations:

@Q
@�

= 0 ;
@Q
@�

= 0 ;
@Q
@


= 0 (12)

After the pre-calibration, we conducted �eld experiments
for a person. We tracked 50 steps for every experiment, and
totally 5 repetitive experiments. Fig. (7) demonstrates that the

Fig. 7. The error of �xed step length and adaptive step length

adaptive step length is more accurate than �xed step length.
The average error for Adaptive Step Length Algorithm is about
0.043 meters, while the Fixed Step Length Algorithm is about
0.182 meters. More important, adaptive step length estimation
is stable.

IV. EXPERIMENTATION

In order to evaluate the ef�ciency of our hybrid algorithm on
accumulative errors, we set up our experimentation to enable a
100m indoor track. We �xed 12 environmental assisted sensor
nodes on the walls of a corridor, which cover the path of the
target to ensure the detection of chest-mounted sensor node's
signals.160samples are collected during the target movement.
Figure 8 shows the real and estimated trajectories by DR and
hybrid algorithm. The red solid line shows the DR path. Due
to the accumulative errors from multiple readings, the dead
reckoning path tends to drift away from the true path over
time. Figure 9 shows the error distribution. The errors are
concentrated in the range from1m to 2m, while the error
peak occurred between1:8m and2m. The maximum error is
3:5426m, and the mean error is1:4755m.

The blue solid line in �gure 8 shows the path estimated
from hybrid method. By applying EKF on the inertial vector
and distance data set, the estimated trajectory is closer than
DR path. Figure 10 shows that the errors are within the range
of 1:5m which is less than the half of the DR results. And
more than 60% of them are concentrated in the range from
0m to 0:8m. The maximum error is1:4789m and the mean
error is0:4167m. The improvement of hybrid algorithm over
DR is signi�cant. At the same time, the additional cost of our
hybrid algorithm is the environmental assisted sensor nodes
which do not generate overhead regarding to the positioning
system. Our results show that WiBEST can improve the overall
accuracy of the positioning by66:3%compared to pure inertial
solution.

V. CONCLUSION

In this paper, we explore the cooperative efforts between
environmental assisted sensors and on-body inertial sensors
to enhance the accuracy of personal indoor localization. We
present Wireless Body and Environmental Sensor Tracking
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Fig. 8. The path estimated from Dead Reckoning (solid black
line),and localization using hybrid algorithm(blue line) for 100m test.
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Fig. 9. The error histograms of 100m test track with Dead Reckoning.
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Fig. 10. The error histograms of 100m test track with WiBEST
Hybrid.

platform . To meet the indoor accuracy requirement with a
DR system, initial position and reliable heading sources are
needed. Experimentation results show that target position-
ing with confusion measurements can be applied to short-
distance indoor localization, but the performance suffers from
accumulative error over the walk distance. For long-term
indoor positioning, we proposed to add environmental assisted
sensor nodes in WiBEST to provide radio-based distance
information. No communication overhead is generated with
distance estimation by these sensor nodes. We adopt an EKF
taking both the position vector from the inertial measure-
ment part and the distances from radio measurement part
to minimize the accumulative errors; hence the accuracy is
improved. The experimentation results show that the hybrid
algorithm outperforms DR with 66.3% accuracy improvement.
An adaptive step length algorithm is also proposed, but it
currently operates with static parameters. The pre-calibration
stage of the algorithm is under development to further improve
the accuracy of WiBEST.
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